3.10.84 \(\int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [984]

Optimal. Leaf size=152 \[ -\frac {2 (b B-a (A-C)) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 (3 A b+3 a B+b C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 (b B+a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d} \]

[Out]

2/3*b*C*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2*(B*b+C*a)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-2*(b*B-a*(A-C))*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/
3*(3*A*b+3*B*a+C*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(
d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {4161, 4132, 3856, 2720, 4131, 2719} \begin {gather*} \frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (3 a B+3 A b+b C)}{3 d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (b B-a (A-C))}{d}+\frac {2 (a C+b B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {2 b C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(-2*(b*B - a*(A - C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(3*A*b + 3*a*B +
 b*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*(b*B + a*C)*Sqrt[Sec[c + d*x
]]*Sin[c + d*x])/d + (2*b*C*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4161

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-b)*C*Csc[e + f*x]*Cot[e + f*x]*((d*Csc[e + f
*x])^n/(f*(n + 2))), x] + Dist[1/(n + 2), Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + (B*a*(n + 2) + b*(C*(n + 1
) + A*(n + 2)))*Csc[e + f*x] + (a*C + B*b)*(n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C
, n}, x] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx &=\frac {2 b C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2}{3} \int \frac {\frac {3 a A}{2}+\frac {1}{2} (3 A b+3 a B+b C) \sec (c+d x)+\frac {3}{2} (b B+a C) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 b C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2}{3} \int \frac {\frac {3 a A}{2}+\frac {3}{2} (b B+a C) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} (3 A b+3 a B+b C) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {2 (b B+a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+(-b B+a (A-C)) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left ((3 A b+3 a B+b C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 (3 A b+3 a B+b C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 (b B+a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\left ((-b B+a (A-C)) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {2 (b B-a (A-C)) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 (3 A b+3 a B+b C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 (b B+a C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 2.72, size = 223, normalized size = 1.47 \begin {gather*} \frac {e^{-i d x} \sec ^{\frac {3}{2}}(c+d x) (\cos (d x)+i \sin (d x)) \left (3 i a A-3 i b B-3 i a C+3 i a A \cos (2 (c+d x))-3 i b B \cos (2 (c+d x))-3 i a C \cos (2 (c+d x))+2 (3 A b+3 a B+b C) \cos ^{\frac {3}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+i (b B+a (-A+C)) \left (1+e^{2 i (c+d x)}\right )^{3/2} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+2 b C \sin (c+d x)+3 b B \sin (2 (c+d x))+3 a C \sin (2 (c+d x))\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(Sec[c + d*x]^(3/2)*(Cos[d*x] + I*Sin[d*x])*((3*I)*a*A - (3*I)*b*B - (3*I)*a*C + (3*I)*a*A*Cos[2*(c + d*x)] -
(3*I)*b*B*Cos[2*(c + d*x)] - (3*I)*a*C*Cos[2*(c + d*x)] + 2*(3*A*b + 3*a*B + b*C)*Cos[c + d*x]^(3/2)*EllipticF
[(c + d*x)/2, 2] + I*(b*B + a*(-A + C))*(1 + E^((2*I)*(c + d*x)))^(3/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((
2*I)*(c + d*x))] + 2*b*C*Sin[c + d*x] + 3*b*B*Sin[2*(c + d*x)] + 3*a*C*Sin[2*(c + d*x)]))/(3*d*E^(I*d*x))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(638\) vs. \(2(188)=376\).
time = 0.14, size = 639, normalized size = 4.20

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {2 a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 A b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 B a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 \left (b B +a C \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}+2 C b \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(639\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*a*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*A*b*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*(B*b+C*a)/sin(1/2*d*x+1/2*c)
^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos
(1/2*d*x+1/2*c)-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(
1/2)))+2*C*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)
^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2
)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.84, size = 221, normalized size = 1.45 \begin {gather*} \frac {\sqrt {2} {\left (-3 i \, B a - i \, {\left (3 \, A + C\right )} b\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (3 i \, B a + i \, {\left (3 \, A + C\right )} b\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-i \, {\left (A - C\right )} a + i \, B b\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (i \, {\left (A - C\right )} a - i \, B b\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (C b + 3 \, {\left (C a + B b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-3*I*B*a - I*(3*A + C)*b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))
 + sqrt(2)*(3*I*B*a + I*(3*A + C)*b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) -
3*sqrt(2)*(-I*(A - C)*a + I*B*b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) +
 I*sin(d*x + c))) - 3*sqrt(2)*(I*(A - C)*a - I*B*b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4
, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(C*b + 3*(C*a + B*b)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(
d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \sec {\left (c + d x \right )}\right ) \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2),x)

[Out]

Integral((a + b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sqrt(sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((a + b/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________